コンテンツにスキップ

業績リスト

Google Scholarのプロフィールはこちら

学術雑誌論文

  1. Ayuko Kitajou, Tatsuya Mitsuyasu, T. Nagai, Koji Yoshida, and Wataru Kobayashi, “NaClO4 Ethylene Glycol–Water Binary Solution as an Electrolyte for Aqueous Sodium Ion Batteries,” Electrochemistry 91, 117002 (7 pages) (2023); https://doi.org/10.5796/electrochemistry.23-00086.

  2. Koji Yoshida, T. Nagai, Koji Ohara, Yuto Shirase, Kenji Miyatake, and Junji Inukai, “In-situ observation of an anion exchange membrane at various humidity by X-ray scattering,” Journal of Molecular Liquids 391,123197 (5 pages) (2023); https://doi.org/10.1016/j.molliq.2023.123197.

  3. Yoshimichi Andoh, Shin-ichi Ichikawam, Tatsuya Sakashita, Kazushi Fujimoto, Noriyuki Yoshii, T. Nagai, Zhiye Tang, and Susumu Okazaki, “An exa-scale high-performance molecular dynamics simulation program: MODYLAS,” The Journal of Chemical Physics 158, 194803 (12 pages) (2023); https://doi.org/10.1063/5.0144361.

  4. Hiromi Baba, Ryo Urano, T. Nagai, and Susumu Okazaki, “Prediction of Self-diffusion coefficients of chemically diverse pure liquids by all-atom molecular dynamics simulations,” Journal of Computational Chemistry 43, 1892–1900 (2022); https://doi.org/10.1002/jcc.26975.

  5. Han Asi, Bhaskar Dasgupta, T. Nagai, Osamu Miyashita, and Florence Tama, “A hybrid approach to study large conformational transitions of biomolecules from single particle XFEL diffraction data,” Frontiers in Molecular Biosciences 9, 913860 (15 pages) (2022); https://doi.org/10.3389/fmolb.2022.913860.

  6. T. Nagai and Susumu Okazaki, “Global diffusion of hydrogen molecules in the heterogeneous structure of polymer electrolytes for fuel cells: Dynamic Monte Carlo combined with molecular dynamics calculations,” The Journal of Chemical Physics 157, 054502 (10 pages) (2022); https://doi.org/10.1063/5.0096574.

  7. T. Nagai, Akira Yoshimori, and Susumu Okazaki, “Dynamic Monte Carlo calculation generating particle trajectories that satisfy the diffusion equation for heterogeneous systems with a position-dependent diffusion coefficient and free energy,” The Journal of Chemical Physics 156, 154506 (14 pages) (2022); https://doi.org/10.1063/5.0086949.

  8. T. Nagai, Kazushi Fujimoto, and Susumu Okazaki, “Three-dimensional free-energy landscape of hydrogen and oxygen molecules in polymer electrolyte membranes: Insight into diffusion paths,” The Journal of Chemical Physics 156, 044507 (14 pages) (2022); https://doi.org/10.1063/5.0075969.

  9. Kazushi Fujimoto, T. Nagai (co-first), and, Tsuyoshi Yamaguchi, “Momentum removal to obtain the position‐dependent diffusion constant in constrained molecular dynamics simulation,” Journal of Computational Chemistry 42, 2136–2144 (2021); https://doi.org/10.1002/jcc.26742.

  10. T. Nagai, Shuhei Tsurumaki, Ryo Urano, Kazushi Fujimoto, Wataru Shinoda, and Susumu Okazaki, “Position-dependent diffusion constant of molecules in the heterogeneous systems as evaluated by the local mean squared displacement,” Journal of Chemical Theory and Computation 16, 7239–7254 (2020); https://doi.org/10.1021/acs.jctc.0c00448.

  11. Asanga Bandara, Afra Pahani, George A. Pantelopulos, T. Nagai, and John E. Straub, “Exploring the impact of proteins on the line tension of phase-separating ternary lipid mixture,” The Journal of Chemical Physics 150, 204702 (15 pages) (2019); https://doi.org/10.1063/1.5091450.

  12. T. Nagai, Florence Tama, and Osamu Miyashita, “Cryo-cooling effect on DHFR crystal studied by replica-exchange molecular dynamics simulations,” Biophysical Journal 116, 395–405 (2019); https://doi.org/10.1016/j.bpj.2018.11.3139.

  13. Ashutosh Srivastava, T. Nagai, Arpita Srivastava, Osamu Miyashita, and Florence Tama, “Role of computational methods in going beyond X-ray crystallography to explore protein structure and dynamics,” International Journal of Molecular Sciences 19, E3401 (23 pages) (2018); https://doi.org/10.3390/ijms19113401.

  14. T. Nagai, Yuki Mochizuki, Yasumasa Joti, Florence Tama, and Osamu Miyashita, “Gaussian mixture model for coarse-grained modeling from XFEL,” Optics Express 26, 26734 (16 pages) (2018); https://doi.org/10.1364/OE.26.026734.

  15. George A. Pantelopulos, T. Nagai, Asanga Bandara, Afra Panahi, and John E. Straub, “Critical size dependence of domain formation observed in coarse-grained simulations of bilayers composed of ternary lipid mixtures,” The Journal of Chemical Physics 147, 095101 (9 pages) (2017); https://doi.org/10.1063/1.4999709.

  16. T. Nagai, “General formalism of mass scaling approach for replica-exchange molecular dynamics and its application,” Journal of the Physical Society of Japan 86, 014003 (9 pages) (2017); https://doi.org/10.7566/JPSJ.86.014003.

  17. T. Nagai, George A. Pantelopulos, Takuya Takahashi, and John E. Straub, “On use of mass scaling for stable and efficient simulated tempering with molecular dynamics”, Journal of Computational Chemistry 37, 2017–2028 (2016); https://doi.org/10.1002/jcc.24430.

  18. T. Nagai and Takuya Takahashi, “Mass-scaling replica-exchange molecular dynamics optimizes computational resources with simpler algorithm,” The Journal of Chemical Physics 141, 114111 (10 pages) (2014); https://doi.org/10.1063/1.4895510 arXiv:1405.3484v3.

  19. T. Nagai, Yuko Okamoto, and Wolfhard Janke, “Crossover scaling in the two-dimensional three-state Potts model,” Condensed Matter Physics 16, 23605 (8 pages) (2013); https://doi.org/10.5488/CMP.16.23605.

  20. T. Nagai, Yuko Okamoto, and Wolfhard Janke, “Application of simulated tempering and magnetizing to a two-dimensional Potts model,” Journal of Statistical Mechanics: Theory and Experiment 2013, P02039 (21 pages) (2013); https://doi.org/10.1088/1742-5468/2013/02/P02039.

  21. T. Nagai and Yuko Okamoto, “Simulated tempering and magnetizing: Application of two-dimensional simulated tempering to two-dimensional Ising model and its crossover,” Physical Review E 86, 056705 (12 pages) (2012); arXiv:1205.2523; https://doi.org/10.1103/PhysRevE.86.056705.

  22. T. Nagai, Ryuichi Ueoka, and Yuko Okamoto, “Phase behavior of lipid bilayer system studied by a replica-exchange molecular dynamics simulation,” Journal of the Physical Society of Japan 81, 024002 (9 pages) (2012); https://doi.org/10.1143/JPSJ.81.024002.

国際会議会議録

  1. T. Nagai and Takuya Takahashi, “Momentum and velocity scaling rules in replica-exchange molecular dynamics simulations with mass manipulation,” Proceedings of Computational Science Workshop 2014 (CSW2014); JPS Conference Proceedings 5, 011009 (7 pages) (2015) (査読あり).

  2. T. Nagai and Yuko Okamoto, “Simulated tempering and magnetizing of the Ising model,” Proceedings of the 25th Annual Workshop: Recent Developments in Computer Simulation Studies in Condensed Matter Physics (Athen, Georgia, USA, February 20–24, 2012); Physics Procedia 34, 100–104 (2012) (査読なし).

  3. T. Nagai and Yuko Okamoto, “Replica-exchange molecular dynamics simulation of a lipid bilayer system with a coarse-grained model,” Proceedings of the 21st IUPAC International Conference on Chemical Thermodynamics (ICCT-2010) (Tsukuba, Japan, August 1–6, 2010); Molecular Simulation 38, 437–441 (2012) (査読あり).

その他

  1. 永井哲郎, “不均一な溶媒である高分子電解質膜におけるガス拡散の機構解明” Journal of the Japan Association of Solution Chemistry(溶液化学研究会誌) 4, 7–9 (2023).

  2. 永井哲郎、 岡崎進, “不均一系にける物質輸送に関する分子論的研究の展開” アンサンブル(分子シミュレーション学会誌) 24, 160–166 (2022).

  3. 永井哲郎, “優秀講演賞 受賞寄稿「位置に依存した拡散係数の新規評価手法の開発: 大規模不均一系における物質輸送解明にむけて」” フロンティア(理論化学会誌) 4, 20–23 (2022).

  4. 永井哲郎、 岡崎進, “研究室だより「東京大学大学院新領域創成科学研究科物質系専攻岡崎グループ」” アンサンブル(分子シミュレーション学会誌) 24, 82–84 (2022).

受賞など

  1. 第18回(2024年)日本物理学会若手奨励賞、2023年10月;
    https://www.jps.or.jp/activities/awards/jusyosya/wakate2024.php#r12
  2. 2023年度溶液化学研究会奨励賞受賞、2023年8月25日;
    http://solnchem.jp/award/2023.html
  3. 優秀講演賞、第23回理論化学討論会、オンライン、2021年5月13–15日;
    https://www.rkk-web.jp/theochem23/award.html.
  4. Best Poster Presentation Award of the 5th International Conference on Molecular Simulation, Jeju, Korea, November 3–6, 2019.
  5. Journal of Chemical Physics top reviewer 2017, The Journal of Chemical Physics 149, 010201 (2018);
    https://doi.org/10.1063/1.5043197.

外部資金

  1. スーパーコンピュータ「富岳」成果創出加速プログラム「燃料電池触媒層の物質輸送機構解明に向けた、マルチスケール計算技術構築とその活用」(分担) 2023/4–
  2. 科研費若手B「生体分子シミュレーションの最適な条件探索」 (代表) 2014/4–2018/3